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THE EFFECT OF CAUSTICS IN ACOUSTIC

INVERSE SCATTERING EXPERIMENTS

CHERYL BOSMAN PERCELL

ABSTRACT

Most inversion techniques described in the literature rely on the validity of ray

tracing, which breaks down in thepresence of caustics. The linearized acoustic

inverse problem with constant reference velocity is analyzed in order to quantify.

the effects of a caustic in a probing wavefront on the scattered signal.

When the sound velocity is perturbed by a localized, unidirectional, high fre-

quency inhomogeneity, the surprising result obtained is that the energy in the scat-

tered field is spread out if the perturbation is located on the caustic. This spreading

of energy allows the construction of an oscillatory integral representation of the scat-

tered field, which has the same form, whether or not an incident caustic is present.

On the other hand, a sequence of localized high frequency sound velocity pertur-

bations is constructed such that the size of the scattered signal relative to the size

of the inhomogeneity becomes arbitrarily large as the support of the perturbation

approaches the caustic.



In regions where there are no caustics, a general inverse operator is found for

smoothly varying reference velocities. This operator is shown 'to be equivalent to

an inverse operator constructed by Beylkin (1985).



ACKNOWLEDGEMENTS

My sincerest appreciation is extended to the members of my thesis committee:

William W. Symes, Yves Angel, C.C. Wang, and Mary F. Wheeler. I am partic-

ularly indebted to William W. Symes, my advisor, for his patience and his deep

understanding of acoustic inverse problems. I am grateful to Vivian Choi for her

expert ITTEX typing. I also wish to thank Peter Percell for understanding what it's

like to be a graduate student.

This research was supported by AFOSR grant AFOSR-89-0056 and ONR grant

N00014-85-K0725.



TABLE OF CONTENTS

Chapter 1 Introduction 1

Chapter 2 Background 7
2.1 Geometrical Optics .................... 7
2.2 Caustics ............................... 11
2.3 Inverse Problems ................... ...... 17

Chapter 3 Plane Wave Velocity Perturbation 22
3.1 An Appropriate Problem ..................... 23
3.2 Decompose Initial Data into Plane Waves ......... 25
3.3 Geometrical Optics Approximation ............. 29
3.4 Sum the Plane Waves ........................ 35
3.5 Locate Caustics ........................... 37
3.6 Integral Operator Representation for the Scattered Signal 42

Chapter 4 An Example of Anomalous Scattering Strength
from a Caustic 44

Chapter 5 The Inverse Operator 57
5.1 The Construction of the Inverse ... ............ 57
5.2 An Extension for 3-D Varying Background Velocity . . 65

Chapter 6 The Relationship to Beylkin's Inverse 67

References 77



TABLE OF FIGURES

Chapter 1 Introduction
1.1 A caustic as an envelope of singular wavefronts .... 2
1.2 A cusped caustic ......................... 4

Chapter 2 Background
2.1 A slim tube of rays ......................... 10
2.2 Each stationary point corresponds to a ray ....... .14
2.3 The eikonal equation is hyperbolic, elliptic, and parabolic 16

Chapter 3 Calculation of the Perturbational Field
3.1 The problem to be analyzed .................. 24
3.2 The time delay, r(o) ...... ................... 28
3.3 Snell's equal angle law of reflection ............. 32
3.4 A perturbation located above the caustic ........ .. 39
3.5 A perturbation located on the caustic ............ 40
3.6 A perturbation located below the caustic ........ .. 41

Chapter 4 Construction of an Illuminated Scattered Signal
4.1 The relationship between the perturbation and the re-

flected ray tube ........................... 46
4.2 A slim ray tube enclosed by two incident rays ..... .52
4.3 The bisector of the ray tube .................. 52
4.4 X,,(x) = 1 on the disk E) ..................... 53
4.5 Points mapped along reflected rays ............. 55

Chaphtr 5 The Inverse Operator
5.1 The relationship between the reflected ray direction at

the surface and the perturbation direction ......... 63



Chapter 6 The Relationship to Beylkin's Inverse
6.1 The reflection point of the ray which passes through

............................. 71
6.2 The vectors k, which parameterize the constant travel

time ellipse ..... ........................ 73
6.3 The geodesic distances along the incident and reflected

rays ...... ............................ 74
6.4 The arrival times parameterizing constant depth surfaces 76



FI

CHAPTER 1

Introduction

Inverse scattering problems are central in many data-processing technologies,

including tomography, radar tracking, seismology, and ultra-sonic testing. In any

inverse scattering problem, if the medium is inhomogeneous, then wavefronts gen-

erally will become singular. The variation in wave velocity causes the wavefronts to

fold over on themselves, as in Fighre 1.1. This produces an imperfect focusing effect

called a caustic. In this case, the relationship between the data and the scatterer.

is not well understood at present. In order to begin an investigation of this rela-

tionship, we will concentrate our efforts on the linearized acoustic inverse problem,

which is directly related to many of the problems listed above.

The acoustic wave equation, or forward problem is:

c2 (x)Ut _ V2U = 0 in R(0

with some initial-boundary data. The inverse problem can be stated as follows:

Let S(c I = u on (some hypersurface in .") x [0,Tj . Then

given Smeasured, find c(x) such that S[c] = Smeasured
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(b)

Figure 1. 1. (a) An inhomogeneous medium causes a wavefront to fold
over on itself. (b) The caustic is the envelope of the singular
wavefronts.
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Linearization of the inverse problem is accomplished by a perturbation technique

called the Born approximation. The wavespeed c(x) is assumed to be a small

perturbation about a smooth background velocity, which implies a perturbation of

the acoustic wave field u about a reference field

c = co+Sc

u = Uo+8U.

Then the forward perturbational problem can be expressed as

TU o I -V Iu 0  = 0 (2 )

8ittt - V 2SU = 26C.

The linearized inverse problem is stated as follows:

Gi-ven co, let 6S = DS[co]&C = 8u on (some hypersurface in W") x

[0,T]. Then given 6Smeasured, find Sc(x) such that DS[co]Sc -

6Smeasured.

Most inversion techniques in practice today are based on the method of geomet-

rical optics. The behavior of a wavefront spreading into an undisturbed region is

obtained by propagating discontinuities along characteristics, or rays. The theory is

valid only if the rays fill the entire region of interest and do not cross. As in Figure

1.2, a caustic is formed by the envelope of. crossing rays, making the geometrical

optics method, and hence the inversion technique, invalid.
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italwavefr-out

Cautic

Figure 1.2. A cusped caustic formed by a convex wavefront in a
homogeneous medium.
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Even though a caustic is defined by the invalidity of the geometrical optics

method, it is a real physical phenomenon where the amplitude becomes very large.

In fact, Kulkarney and White [21 have shown that in a medium with small random

perturbations of a constant wavespeed, every ray passes through a caustic with

probability one in a propagation length scale of order O(a"}), where the standard

deviation of propagation speed fluctuations is O(a).

It makes sense that caustics should hold some information about the medium

and perhaps even "illuminate" it. What has not been done is to quantify this

information and take it into account when solving the inverse problem. Perhaps

Morawetz [3, p. 331] said it best. "There is as much information about the sound

speed carried in a caustic as in a smooth ray pattern. The problem is to extract

it." .

Since all methods available today for solving the linearized inverse-problem ig-

nore the presence of caustics, it is natural to ask what effect a caustic in a probing

wavefront has on the scattered signal, 6Usurface. Even further, we want to know if

it is possible to represent the scattered field with methods that are available today.

Ultimately the goal is to find an inverse operator for that representation.

These issues are addresscd in the following manner: In Chapter 2, we review

the available literature. including a modification to the geometrical-optics method

to allow solutions near caustics. In Chapter 3, we analyze the problem of a convex



6

initial wavefront moving into a region with constant background velocity. The

initial wavefront forms a caustic and the perturbation in wavespeed is taken to be

localized, high frequency and unidirectional in order to isolate the results. The

surprising result obtained is that if the perturbation is located on the caustic in

the background field, the scattered signal is not amplified; it is in fict spread out.

The problem with this result arises in taking the perturbation to be more general

than unidirectional. In Chapter 4 a sequence of pertL rbations is constructed so that

when there is a caustic present in the incident field, the size of the scattered signal,

6u,,, relative to that of the scatterer, gc,,, becomes infinite as 6c,, approaches the

caustic. That is

16U 112 - oo, as n -- + oo .
lISC,,II

2
It is also'shown that if there are no caustics present, then II-UNI remains bounded.116Cn 112

In Chapter 5 we derive an inverse operator for the representation of the scattered

signal obtained in Chapter 3, and in Chapter 6 this inverse is shown to be related

to the inverse operator constructed by Beylkin in [13].



CHAPTER 2

Background

2.1 Geometrical Optics

Geometrical optics is a method for obtaining the behavior of a wavefront spread-

ing into an undisturbed region by propagating discontinuities along rays. For an

excellent discussion of this method, see Whitham (1].

The wave equation is solved asymptotically near the wavefront by means of art

ansatz of the form
00

U(x, t) E aj(x, t)fj(O(x, t))

j=1

where fj = fj-,.

The wavefront is given by O(x, t) = 0, and it is assumed that u is identically

zero in 6(x, t) < 0. For us, f3 has either the form

L(¢)- tm+ ()= (m+j)! ,

0, < 0

for a wavefront expansion, where Ho(o) is the Heaviside function, or f ( k) = oik)

for a high frequency approximation.

7
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Substitution of the ansatz into the wave equation (1) and setting the coefficients

of the fi equal to zero gives equations for the phase 0 and the amplitudes a1 :

IV'] 2 = t (eikonal equation)

COt alt - 2V. Val + (-Ltt - V2O)al = 0 (Is transport equation)

The eikonal equation is solved using Hamilton-Jacobi theory, which is a method

of characteristics for nonlinear equations. The solution is obtained by solving the

following system of O.D.E.s:

d4T d 0

A ~ = -7 r k)
"- t dt rX_ do,

d6= -0 d
a=0

In this case 0 is constant along rays. The amplitude a,(x, t) is also given by the.

solution of an O.D.E. along the rays:

da a dt dx
do, = To, d
da l ( Ott _ V 2 ) a , .

These equations can always be solved as long as the rays cover the entire region

of interest and do not cross. If the rays tend to focus, then the geometrical optics

approximation incorrectly predicts that as the ray density becomes infinite, so does

the amplitude. The envelope of these rays is called a caustic (see Figure 1.2).

To see this, multiply the transport equation by at:

a , .0ootal, - 2V6 -Val + (¢tt - V2)al = 0 (3)



9

This gives the space-time divergence

"(Ota') + V (-a'VO) = 0.

Consider a slim tube formed by rays emanating from the initial wavefront in

some disk Do centered at a point xo and going to the wavefront at some later time

t. Let Dt be the slice of rays at time t. (See Figure 2.1.) Integrating (3) over the

volume Rt formed by the rays bounded by Do and Dt and using the divergence

theorem, we get

0 o-0 t,-a'VO) nds = 0.

On Do the normal is n = (-1,0); on Di, n = (1,0); and on the sides n is perpen-

dicular to the rays, which are parallel to the vector (Ot, -VO). Thus

a2  a2J Od f H-O~ds = 0.4
DC02 ID C0  

4

Suppose X(X, t) maps a point on the initial wavefront to a point x at time t. Let

J(X, t) = IVxI be the Jacobian of this map. Then

fo [a~X tI ,t),(<(X') t)J(X t) _ a(, 0 j~5(X,0)] ds=O
IOo [ac(x(X, 0 , 4W ...

Since this holds for any disk Do on the initial wavefront, then as long as the integrand

is continuous,

ai(Xy(X, t), t) = ai(X,) co((Xt)) I (X, t) . (5)
co(X)
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tn

Figure 2. 1. Re is the slim tube of rays going from the initial wavefront in
the disk Do to the wavefront at some later time t.
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When X(X, t) becomes singular, J approaches zero and (5) is no longer valid.

But expanding (4) to first order about Xo, we get

(xo) AD = a' o) AD

where ADt and ADO are the infinitesimal areas of the disks Dt and Do. This is

actually a statement that energy flux along the ray tube is constant. It is clear that

when ADt approaches zero, a2(x) approaches infinity. The ray tube collapses, and

the theory is no longer valid.

2.2 Caustics

Although geometrical optics fails at a caustic, it can be altered to produce valid

results. Expanding on the example of Keller [4], Ludwig [5] has constructed uniform

asymptotic expansions for solutions of linear hyperbolic equations at a caustic. For

the simple case of a smooth caustic and the reduced wave equation

V2u + w2u = 0,

the ansatz is changed to a linear combination of the Airy function and its derivative.

The structure is such that on one side of the caustic the original oscillatory expansion

is given by geometrical optics (illuminated side), and on the other side the solution is

exponentially decaying (dark side). The transition between the two sides is smooth

with asymptotically larger amplitude along the caustic.
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We- show here the motivation for the construction since it will also motivate

some of our own analysis. An appropriate ansatz for the leading order asymptotic

solution of the reduced wave equation is

u(x) = a(x)ei0(x)

where w is large.

The eikonal and transport equations are respectively

IVl0 12 = 1

2VO. Va+aV20--0

But at a caustic, the local ray density goes to zero, the amplitude goes to infinity,

and the geometrical optics solution becomes invalid.

If, however, the initial wavefront were decomposed into plane waves, each plane

wave could propagate into the region without forming a caustic since the wavespeed

is identically one. This suggests an ansatz of the form

u(x) = f a(x, O)eik4(x"#)dO, (6)

where O(x, 0) = constant describes a plane.

Ordinarily, the method of stationary phase can be used to get ar asymptotic

representation for u. If the stationary points defined by

0 (x,0) =0
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are given by Oj, then

( 2,r 2

as long as oee(x,Oj) # 0. If t0(x,Oj) = Oeo(x,Oj) = 0 and q099(x,0j) # 0, then

similar analysis yields u(x) - 0(w- ). If two stationary points coalesce, then 0ee

approaches zero, and in the region between ¢09 = 0 and 0ee - 0, the method

of stationary phase breaks down. This transition zone corresponds to the region

near a caustic. Notice in Figure 2.2 that each stationary point corresponds to a

contribution from a ray. Each point to the right of the caustic is the intersection

of two rays. Along the caustic, each point corresponds to only one ray. No rays.

penetrate to the left of the caustic. This region is called a shadow zone.

The simplest function modelling this phenomenon is given by Chester, Friedman,

and Ursell [6]. They showed that (x, 0), -y(x), and p(x) can be found so that

¢(x, )= +X 1- 3
3

provided that 0 is analytic. With this change of variables, the integral (6) becomes

U(x) = e"fJa(x.(-)) ,- )d .

The stationary points are given by

l 1 2p- 5 )= - =o
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no rays

two rays initial wavefront

caustic

one ray

F igure 2.2. Each stationary point corre~ . nds to a contribution from a ray.
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As 4- -4 0, the second derivative also goes to zero, but the third derivative is

constant.

By expanding a(x, 0( ))2 in a Taylor series

dO
a(x, 0) - = ao + aj + p)Q()

and integrating by parts one can show that

u(x) =21r e (X ) Ai (-,o'p(x)) + a.j(X)Ai' (-w pw x

where

Ai(-t) - d
,2,1 00

is an Airy function. This provides a new ansatz

~ux "' ao(x)Ai (- pX) + a'' i w ~) 7

Substituting (7) into V2u + w2u = 0 and collecting like powers of w gives equations

for y(x), p(x), ao(x), and a1 (x) corresponding to eikonal and transport equations. It

can be shown that depending on the sign of p(x), the eikonal equation is hyperbolic

(illuminated region), elliptic (shadow region), and parabolic (caustic). (See Figure

2.3.)

In the illuminated region. the original geometrical optics approximation is still

valid. Near the caustic, the r:ew Airy function representation is appropriate. If the
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0<0
elliptic

shadow

initial wavefront

hyperbolic

parabolic illuinfated
caustic

Figure 2.3. Depending on the sign: of p(x), the cikonal equation is
hyperbolic, elliptic, or parabolic.
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caustic is analytic and a, is analytic on the caustic, then -1, ao, a, and p can be

continued into the shadow region, and the solution can be interpreted in terms of

complex rays.

There are similar results for cusped caustics, linear systems, and progressing

wave expansions using generalized Airy functions or solutions to the Tricomi equa-

tion

axf(x,y) = xy f(x,y) .

Kravstov [7,81 has also developed uniform asymptotic solutions of hyperbolic equa-

tions, in particular, Maxwell's equations. Stickler et al. [9] have applied Ludwig's

progressing wave ansdtz to a point source problem.

2.3 Inverse Problems

There are many methods available for solving linearized inverse problems. Clayton

and Stolt [10] use the WKBJ method to asymptotically obtain the Green's operators

for the reference field. Then a comparison of the Green's operators to the kernel of a

Fourier transform facilitates the relation of the data field to the medium parameters.

Of course, the WKBJ method is invalid in the vicinity of turning points, which

correspond to points on a caustic. Cohen and Bleistein [11] use a family of specific
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reference fields, that they call probes, to solve an integral equation of the form

f uova(r)dV = 0

for the medium parameter a(r). Stacking and migration methods are also based

on ray theory. An illuminating exposition on the connection between geometrical

optics and migration methods is found in a paper by Lailly [12].

Beylkin [13] gives a rigorous derivation of migration which he defines as a dis-

continuity imaging technique. He linearizes the inverse problem for the Helmholtz

equation with a point source. That is,

[V 2 + k2n2(x)]v = S(x- 1)

n2(x) = n2(X) + f(x)

V = n
V = V i n 

+] V
s c

gives

[V2 + k2no2JV' n = 8(x-

[v2 + k 2 niSc -k2f(X) V .

Geometrical optics is used to find the Green's function for vin and for vs':

u-t c(k)Aou'(x,r/)e i k oout(x)
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Then the scattered field is represented as

v"'(k, ,q) = Wf(k, ,q) = (-ik)n - I fx eiko(x'')a(x, 'r)f(x)dx,

where 0 = qS" + rt, a = AinAuL, and q and represent source and receiver

positions.

The solution is shown to be related to the Fourier transform of a generalized

Radon transform (GRT)

v(k,,)= (-ik)"-'r(k, ,)

where

Rf(t, ,rq) = ff(x)a(x, ,rq)8(t- O(x, ,i))dx, for t >

Rf(t, ,q) = 0, for t<0.

This is a generalized Radon transform since {O = 0} can be any hypersurface, not

just a plane.

The inverse is constructed from the dual to the GRT, which is called a generalized

backprojection operator. The operator

Ff(y) = RJ.1'+Wf(y) = (2), I k (XY., ' 7A(x, y, i)
(2ir)- J00 Jax JX

x f(x)dxdk n -1 dk

is shown to be asymptotic to the identity operator. The operator

tn-I 0o
.Ffv(o) = I (k)e-'ktdk

(2-,,)~ nJo
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is apptied since v-C is needed in the time domain. Also,

D(xy, /, q) = ¢(x, , q/) - O(y, , 77).

Since the Taylor series for D is

= V0(y, , qi). (x - y) + Q(Ix - y)

the following change of variables makes Ff(y) look almost like the identity operating

on f(y):

p = kVyO(y, , q)

dp = k n- h(y, )d~dk.

Then

Ff(y) - (L of)(y) = (,2r)d

where R2,(y) is the part of the region where no caustics are present. Of course, it is

critical to this method that

OY Y2 ... Y

h(y,, ) = det 
(8 )Y26

6YI4.-I O'Y2C.-1 ... Y4_

be non-zero. This is equivalent to the condition that there be no caustics present.

In fact, Beylkin uses a cutolf function to ensure that h(y, ) # 0. This is why Qj,(y)
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is not-the whole region. The migration scheme is then given by

fmig - Re Iaof .

Only the discontinuities of f are recovered since Re Io9of is just the leading order

asymptotic behavior.



CHAPTER 3

Plane Wave Velocity Perturbation

The first step in solving an inverse problem is making sure we can solve the

forward problem associated with it. A potential problem is that in the right hand

side of the perturbational equation is the product of 8c and uo0. One might expect

that a perturbation located on a caustic in the reference field would be illuminated.

That is, it would have an effect on the scattered field. It is not clear that the trace

of the scattered field can be represented using geometric optics or the methods of

Ludwig.

In this chapter we analyze an appropriate problem in order to investigate the

effect on the scattered signal of having a caustic in the reference wavefield. We

decompose initial data into plane waves as is suggested by Ludwig's construction.

Then geometrical optics is used to propagate each plane wave through the pertur-

bation. The plane waves are put back together again, and caustics are located by

the failure of a stationary phase calculation to reduce the number of integration

variables.

22
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3.1 -An Appropriate Problem

To begin this investigation, we analyze the simplified problem of a strictly convex

wavefront moving into a two-dimensional region where the reference wavespeed is

constant, co = 1. Since the wavefront is convex, a cusped caustic will develop even

though the region is homogeneous. We take Sc to be a localized high frequency

perturbation in some direction k,

8c = X(x)ei k x

where X(x) is an envelope function. We will later discuss what happens when

solutions are summed over k. See Figure 3.1 for an illustration.

Next, we choose the form of the singularity in the initial data. The fundamental

solution of the wave equation in 2-D with U = 0 for t < 0 and c = 1 is

f(x, t) = 127r

which suggests using the following initial data:

1

Uo(x,0) = a(x) I g(-zP(x))

where 4P(x) = 0 describes the initial wavefront, and a(x) is smooth, with compact

support. The initial value .(x, 0) is determined by specifying that it be a single

progressing wave, to leading order.

To be assured that a simple caustic will occur, we assume that the incident
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signal recoded here X2 = 0

SSC= X(X)eikxi, k large

CO'

Figure 3. 1. The problem to be analyzed.
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wavefront is strictly convex. To simplify calculations, we also assume that O(x) can

be described by its graph, O(x) = X2 - r(Xl).

3.2 Decompose Initial Data into Plane Waves

Since the geometrical optics representation breaks down near a caustic, we decom-

pose the initial data into plane wave components, each of which can be propagated

through the region containing the perturbation 5c without forming a caustic:

U(x, 0) = Uo(x, 0) = j dOuo(x, 0; 0).

Then

6U(x,t) = J dO6u(x,t; 0)

where

6utt - V 2 u = 2X(x)ekxU01'(9) (9)
6 u= iu =0, for t<0.

To accomplish the decomposition we write the initial data as the inverse of its

Fourier transform:

U(x.0) = dO I dw we" F(U(x, 0)) (10)

where

F(U(x, 0)) i e./,3 y e*) Hw( v1y(y)
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is the Fourier transform of U(x, 0). Making the change of variables q = (yl, -b(y)) =

(y,, F(y,) - y2) and evaluating H(02) gives

F(U(x, 0)) = f 00di1 fo dn2ia(l, r(11i) - Vq

By writing a(ri, P(71 ) - q2) = a(rh, [(n, )) + and invoking

the assumption that a and - have compact support in n12, F(U(x, 0)) can be

approximated by

F(U(x, 0)) =

]o -(1 , ]d 1 + 0(-) .

The 02 integral is evaluated by using Cauchy's integral theorem to write it as

f od 1 W2 172 _ jsg 2ico 1 92'724 ~ d2 - e 9 nV 12

then rotating the contour of integration from the real rq2 axis to the positive or

negative imaginary 712 axis depending on the sign, sgn 02. Then

F(U(x, 0)) = 0 di-i9-G(+tr(n)) c(qi,r( ))e" 0,') -s + 0(-).

The r7, integral-is then evaluated asymptotically using the method of stationary

phase. Letting q,* represent the stationary point defined by '(r) -_, we have
02

F(U(x, 0)) - ia(q,, r(7 e , i 02)
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Notice-that to each point on the initial wavefront b(r) = 0 is associated a direction

0, which is the unit normal to b('1) = 0 at that point. That is,

(11)

since the stationary point is given by 9. (1, r'(r;)) = 0 and I(P7) = '12 -

Substituting the asymptotic evaluation of F(U(x, 0)) into the expression (10)

for U(x, 0) gives

T Ix,0)~ dw eiw"("-(nj*,r(qj)))

The limits of integration of the w integral can be extended to include the negative

w axis by changing the sign of both w and 0. Then

dw = 8(x. 0 - (7n, rl(')). 0),

and the initial data is decomposed into plane wavefronts with a 6-function singu-

larity,

U(x, 0)"J d0ia(7, r(71)) 1 (x:0-(77,r(77)).0).

Let r(O) = -(q;, F(iq)) 0 0. This is the distance from the line x. 0 = 0 to the

tangent to the curve O(x) = 0 at (7', L(q1)) and can be considered as a time delay

when solving (9). (See Figure 3.2.) To keep the notation simple we will drop r(9)

until we obtain 6u(x, t; 0), at which point we will shift t --+ t - r(O).
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0O=

z

initial wavefront

Figure 3.2. The time delay r(O) is the distance from the line x .0 = 0 to the
tangent to the curve O~)=-0 at(i())
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3.3 -Geometrical Optics Approximation

We can now solve each plane wave problem. Clearly, the reference field uo is of the

form uo(x, t; 0) = a(0)8(t - x. 0). Then a progressing plane wave representation can

be derived for the perturbational field 8u, where

02 - V Su-= 2X(x)eikx 0uo (12)

This representation will be valid up to the time that caustics form in the perturba-

tional field.

The calculation of 6u is very similar to a calculation done by Symes and Santosa

in [13]. We guess that 8u has the expansion

&u(x,,t;0) =

bi(x, t)S'(t - O(x)) + b2(X, t)6(t - O(x)) + b3(x, t)g(t - 0((x)),

where O(x) is the incident phase O(x) = x. 0.

Substitution of this expression into (12) with IV012 = 1012 = 1 gives

(2bt + 2Vb, .Vo + b,V20 - 2X(x)ek'a)6"(t - 0)

+ (2b 2t + 2Vb2 . V0 + b2V2O + butt - V2b)6'(t - 0)

+ (2b3t + 2Vb3 .Vo + b3V20 + b2tt - V'b 2)6(t - 0)

+ (b3it - Vb 3)H(t - 0) = 0
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or fP(t - €) + f 2 $'(t - €) + f 35(t - €) + f 4H(t - )= 0. For this to hold, the

following conditions on the coefficients f, - f4 must be satisfied:

ft = 0

2ft - f2 = 0 on tqc
(13)

fl- 2f2t + f3 = 0

f4 =t0 nt > 0.

The first condition in (13) gives an equation for bl(x,t) on the incident wavefront,

t = O(x):

2b, + 2Vbl . VO + bV 20 = 2X(x)eik'Xa. (14)

Since the high frequency perturbation, 8c = X(X)e ik 'x, causes energy to be reflected,

we assume that bi(x, t) has an asymptotic expansion of the form

bi(x,t) - O(xj) (15)
nl- (ik)n

where 0,. is the reflected phase. Upon substituting (15) into (14) and matching

powers of k-1 , the 0(1) term obtained is

2b6 , + 2b' VO. q = 2,yaei(kx - kkr)

on t = O(x). (16)

This implies that

ko,(X. 6(x)) = k"x (17)
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VO. V[kq,(x, O(x))] = VO. V[k x]

ve .VO+OjV€j2 = l.Vo. . (18)

Note that the initial. condition together with the eikonal equation implies Snell's

equal angle law of reflection. From (17),

k = V •,. +

That is, the vector -- is the sum of two unit vectors since IVOrI 2 = 02 and

-= 1. The physical ray L is given by the Hamilton-Jacobi equations.

Then

- = - -

t

which is precisely Snell's law, as can easily be seen from Figure 3.3.

Using (18) in (16) and O(x) = x . gives

bl xa xa

skV k. 0

The second. condition in (13) gives the following differential equation for b2(x, t)

on the incident wavefront:

2b2, + 2Vb2 -VO + b2V20 =

3b,,, + 4Vb1,V 20 + V 2b, on t = O(x). (19)

Assuming that b2(x, t) can be represented by

b2(x, t) b2 ( ik, -G ~
n=-O 

in
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dx

k dx

Figure 3.3. Snell's equal angle-law-of reflection.
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and substituting this expression into (19) yields

2bQ20bt + 2bo2VO = 3b'q$t + 4b'Or,VO, VO + b'IV¢,l2

as the highest order term, O(k). We use the eikonal equation for the reflected phase,

4 , = IV4' I, which comes out of the fourth condition in (13) and will be derived

later in this section. Then

b° = 2b',, (x, O(x)) = k.-9,,(x,

The third condition in (13) gives an equation for b3(x, t) on t = O(x):

2b3, + 2Vb3 . VO + b3V2q = -b., - 2Vbj• - b1 ,V
20_ -V2bI'

+b 2, + 2Vb, VO + b2,V 2 k + V2 b2

on t = O(x). (20)

Substituting the expansion

b3(x,t) = bn(x't)ik6r(Xt) (21)

n=-I (ik)

into (20) yields the following as the highest order, O(k 2), term:

2b;'Or, + 2b 'VO,~ V6 - 2b4t ~ k I ~ -rVc

+bo 2 b02 t 12+ r 4-, + 2°r,V0¢ %7 + b"21 V 'l
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Again-using , = IV rI 2 we get

b;'= -b'r, + b20, on t = 0(x)

- Xa2 (,xq(x)). (22)

Finally, the fourth condition in (13) is the wave equation for b3(x,t) in the light

cone t > O(x):

b3,, - V2b3 = 0. (23)

Using the above expansion for b3(x, t) in (23), we get from the O(k3) and O(k2 ) terms

the eikonal and first transport equations:

SIV¢l -0(24)

2q0r,,b' - 2Vb ' V-, + (r,, - V r)b;' = 0, t > O(x). (25)'

The solution to the eikonal -equation (24) with the initial condition kor(X, O(x)) =

k .x, where O(x) = x. 0, is easily found to be

Or(X,t) k ) . x +- t.

Then the transport equation (25) reduces to

6rtb, t - Vb;I • VOr =-O.

Sn b+ VW "-, W is constant along rays described by

d1" 2k 0

,It __ 1,Io - Or, 2k.
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or = 0 -2k -0k.

On the incident wavefront, b ' is given by (22) so that

Y(xo)- x, a(0) on x = xo- (2k. Ok- 0)(t - . xo).
4(k.-0)3

Then, shifting the time variable t to incorporate the time delay r(0) from the plane

wave decomposition, the perturbational field can be represented as follows:

ikf(k- -. x--(-())

6S1(x, t; 0) ~- e 2k.9 2kG9

{x()a(O)i6,(t _ (o) - x. 0)

X(x)a(o)6(
-- (0) - X. 0)

+ X(x)a(Olik H(t- r(0)- x.0)}
4(k. O)3

where x Xo- (2kOk. -0)(t -r(0)-xo.0) (or xo = (I + (2k. Ok- 0) ®0)-'(x +

(2k. Ok - O)t)).

3.4 Sum the Plane Waves

After summing over the contributions from each plane wave, the perturbational

field at the surface X2 = 0 is

U!__ = [ dO6u I,,=,

J dO l X(xo)a(O)e ikO,(X't- 7(0)) IX2=o

161= i 4(k... 
..
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since the incident wavefront moves away from x2 = 0.

In order to evaluate the integral it is convenient to change variables. There is a

natural change of variables given by the correlation (11) between a direction 0 and

a point on the initial wavefront. We let z(z1 ) = (zi, F(zi)), where ?b(z) = 0. Then

O(zi) = ) = (1 + 12(z,))-P(,), 1) and

r(0(zl)) = -z(zl)" o(zl) = (1 + F'2(zl))- 1/2(-P(zl) + ziI"(zi)].

The curve ?P(z) = 0 is strictly convex so that the map 0 F-+ z, is invertible. This

gives

SU I X2=0 ~ ik f i d.X,(Xo(O(zt)))
a(O) 

("26)
4k91Z2= 1 + "( 1 ikrt,) (26)

where

0,L(zi;x,t, k) = t- r(O(z,)))I.,2 o
1 -

-(k - kir'(zi))-'[(i + r"(Z,)t

+r(-,) - z, r'(,z) +x ,(r(z,) + 2(k2 - k,)k,).
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3.5 -Locate Caustics

Caustics occur where the stationary phase expansion of (26) is invalid, which is

where the phase 4r(zi) has degenerate stationary points. Using

dO__ F r" [2kj, + (I + r'2)-'/2r't - zi + x(1 - 2k)]
dzj 2(k2 - k rt)

=0

gives
dz- 2(k2 - kjF') (1 + r'2)3/2t .

Thus the caustic locus of the perturbational field on the line X2 = 0 is

t = 1 (1 + r' 2(z,)) 3 2. (27)

Note that it is independent of the perturbation direction k and the receiver

location xj. Also notice that the right hand side is the radius of curvature of

VI(z) = 0. This leads one to think that (27) should also represent the caustic locus

of the incident wavefront. This is verified by studying the map (z1 , t) F-+ (ij, z42) by

which points on the initial wavefront are mapped along rays to the wavefront at a

later time t. That is,

(,, ) = (-t, r _)) + t(1 + r'2(z))-/2(-r'(z,),_l).

A caustic is found by looking for where this map is singular. The Jacobian is

det V(,,t)(i, z2) = (r' 2 (zI) + 1)-[(r' 2(zI) + 1)3/2 - tr"(zi)],
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which-is zero precisely when

t p (1 + r'2 (z,)),2.

Thus, if there is a caustic in the perturbational field at the surface x2 = 0, then

the distance along a ray from the incident wavefront to the incident caustic must

equal the distance along a ray from the incident wavefront to the perturbation plus

the distance along the corresponding reflected ray to the perturbational caustic.

This can only happen when the perturbation 8c = X(x)e ik'x is located above the

incident caustic. (See Figure 3.4.) In that case, it is possible to represent the

scattered field at the surface using the methods of Ludwig.

If the perturbation is located near the incident caustic, the only caustic present

in the perturbational field is that piece of the incident caustic. Instead of amplifying

the perturbational field, the caustic causes the reflected rays to be spread out. (See

Figure 3.5.) If the perturbation is below the incident caustic, there will be no caustic

at all in the perturbational field. In fact, the incident wavefront is concave there,

so that the reflected wavefront is also concave. (See Figure 3.6.) For the cases

above, the scattered field at the surface can be represented by a geometrical optics

expansion. In any case, SU can be represented using known methods, even if the

perturbation sits on a caustic.
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/
/

/
/

/

X2 =0

/

bc

initial wavefront

caustic

Figure 3.4. The perturbation is located above the caustic in the reference
field.
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X30

initial wavefront

caustic

Figure 3.5. The perturbation is located on the caustic in the reference field.
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X2 0

bc initial Wavefront

c.austic

Figure 3.6. The perturbation is located below the caustic i, #,he reference
field.
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3.6 -Integral Operator Representation for the

Scattered Signal

If there are no caustics in the perturbational field, then the method of stationary

phase can be used to asymptotically represent the integral in SU (26). Without loss

of generality, we can assume that there is only one stationary point. We then get

the following form for the scattered signal:

,6U IX2= o ' "A (k, xj, t)e io,.(k x ,t) ,

where

A(k,,t) ( ,(o(z))) a(O(z;)) 1"(z)
A~k~xi~t)= (ik)2L4k - (zl*) 1+I" 2 (Zj) IX2=O

and 0,(k,x,t) = k ,(z,,xI,t,k).

To generalize-this formulation to general perturbations, 8c, we can take

8c = X(x)8c(k)ekx

to be one localized Fourier component of a general velocity perturbation Sc(x).

Then the previous analysis will still be valid.

Since 6c occurs only in the right hand side of the first transport equation,

2b,, + 2Vb, . VO + bjV 2-b = 2X(x)Sc(k)e" "a

we can make a simple modification to account for more general perturbations. We
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need only change the ansatz for b, to account for a factor of Sc(k):

00bnl(x)8c(k) ekO,(x,t)

b,(x,t) - E (
n=1 (ik)

The leading order term in b, is

bl = 4k. (k)

Similar expressions can be obtained for b2 and b3. The expression for the scattered

field will change only by a factor of 8c(k):

8U[.2= o e% A(k, xj, t)eiO,.(k'xj't)c(k).

Summing over k gives the trace of the perturbational field 6W due to a localized

velocity perturbation Sc(z),

aj,l=o dkA(k, xj, t)eiOk'xjt)c(k).

We can write Sc(k) as a Fourier i-ategral,

61=V0 2=o ,- J dk A(k, x, t)er(kx) f dz c(z)

Then the scattered signal can be represented by the following Fourier integral op-

erator acting on the velocity perturbation Sc(z):

IVI 2 ( . [P8c!(x 1,t) =

f f dkdzA(k, x,, t)eiOr(k',:xt)-k'zj6c(z)



CHAPTER 4

An Example of Anomalous Scattering Strength from a Caustic

In the previous chapter it was determined that if a high frequency, unidirectional

perturbation were located near a caustic in the incident field, the energy would be

spread out instead of focused. This result does not extend to general perturbations,

8c. It was expected that the product of 6c and u0 , in the right hand side of the

perturbational problem

butt- V 2 8u = 25c uo,

would cause the scattered signal to be illuminated if 6c were located near a caustic

in the reference field uo. This is, in fact, the case. Caustics in a probing wavefield

do cause velocity perturbations to scatter signals more strongly than a smooth ray

pattern would.

In order to quantify this statement, we find a sequence of general perturbations

8c that generate 0(1) scattered signals in a smooth reference field and increasingly

larger signals in the presence of a caustic. That is, oo as Sc moves closer

and closer to the caustic. This example illustrates the fact that even if there is no

caustic in the perturbational field, the scattered signal can be anomalously large.

44
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The construction of this example is best described by the pictures in Figure 4.1.

A perturbation 8c is constructed so that the incident wavefront will be reflected as

a plane wave. The perturbation is localized to lie within a ray tube in the incident

field. As c moves closer to the caustic, the reflected ray tube gets smaller. That

is, the same amount of energy is reflected into a decreasing area.

We first construct the scattered field due to a velocity perturbation of the form

Sc = X(x, z)ek -y •(z)

The incident field at t = 0 is taken to be

uo(x,z,O) =a(xz)H(-O(x,z)) ,

which gives the reference field

uo(x, z, t) i" a(x, z, t)H(t - O(x, z)) .

The phase 0 satisfies the eikonal equation IVOI2 = 1, and the amplitude a(x, z, t)

is given by the transport equation

2Va. V +-aV 2 0 = 0.

The Heaviside singularity H(-0i,) is chosen rather than the point source singularity

' H(-Ob) because the conistruction is simpler. In fact, it parallels the construction

in Chapter 3.
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perturbational wavefront

initial wavefront

Figure 4.1. As the perturbation is placed closer and closer to the caustic,
the reflected rayv tube vets smaller and smnaller.



47

perturbational wavefront

bc

(b)

initial wavefront

wavefront

Figure 4.1. As the perturbation is placed closer and closer to the caustic,
the-reflected ray tube gets smaller and smaller.
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perturbational wavefront

(c)

initial wavefront

wavefront

Figure 4. 1. As the perturbation is placed closer and closer to the caustic,
the reflected ray tube ets smaller and s maller.
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The scattered field has the form

Su(x, z, t) = bl(x, z, t)8(t - O(x, z)) + b2(x, z, t)H(t - O(x, z))

where

b,(x, ,t) = " (x, Z) ek(xzt)
ji(ik)k

b2(X, Z) ik,,(x,z,t)
b2(x, ,) = t) e(ik

j=O (ik)i

The phase must satisfy the initial condition

6,(x, Z', (x, z)) = -/(x, Z) (28)

and the eikonal equation

IVr
2 = €t.

We want to construct the perturbations 6c = x(x, z)e ik,,(,,z) in such a way that

the reflected phase 0, is a plane wave that moves in the -z direction. That is, we

want

i(X, z, t) = t + z.

This automatically satisfies the eikonal equation. In order to satisfy the initial

condition (28), we-must take

-(Xz) = O(X, Z) +z .

The coefficient b! satisfies the transport equation

_b o,, + •b'Vo- = 2,ae . (29)
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Taking the gradient of the initial condition (28) with -y(x, z) = ¢(x, z) + z gives

VOr(X, z, O(x, z)) + re(X, z, O(X, z))VO(X, z) = VO(X, z) + (0,1)

and

v4'. Vq + Or.IV€12 = IVol, + 0

But IV012 = 1 so that

V6,. V + I + 0. (30)

Using (30) in (29), we obtain

bl- _ on O(x,z)=t.

+

Similarly,

R2 = 2b'O, (x, z, 0 (x, z)) 2Xa on O(x,z)-=t.

The coefficient b2 satisfies the wave equation in the light cone

b2,,- V2b2 = 0 in t> O(x,z). (31)

Substituting the above expansion for b2 in (31) gives the eikonal equation for the

reflected phase and the following transport equation for b2:

O2, - Vb. V t = 0 in t > O(x,z).

Then b° is constant along the rays described by

dx
da =  Vor =(0, 1)

dt
d -1
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or _= (0,-1), where x = (x,z). Then the reflected field at the surface can be

written as

bu(x, 0, t) .x(xo, zo)a(xo, Zo) eik(t+z)
1 + 0(Xo, zO) 1=o

where the rays are given by

(x, Z) = (xo, O(xO, zo) -- t),

and (xo, z0) is on the incident wavefront ¢(xo, zo) = c. Notice that the amplitude

of the reflected field is constant along reflected rays. This construction is valid only

above the incident caustic, but this is sufficient for present purposes.

To form the sequence, let each element of {5c,,} be a localized high frequency

perturbation of the form

6c, = xn(x, z)ekY€ x)

where

O(, (x, Z) + Z.-

In order to describe the characteristic function Xn(X, z), let T be a slim ray tube

enclosed by two incident rays. The cross sectional area of the ray tube goes to zero

as the rays approach the caustic (see Figure 4.2). Let r be the length of the bisector

of the two bounding rays between the initial wavefront and the crossing of the rays,

as in Figure 4.3. Then let \,(x. z) be equal to one on a disk D,, that is centered

at a point on the bisector a distance r - , from the incident wavefront. This disk
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1"

caustic

Figure 4.2. T is a slim ray tube enclosed by two incident rays.

r

Figure 4.3. The length of the bisector of the two bounding rays between the
initial wavefront and the crossing of the rays is r.
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,

Figure 4.4. The envelope function Xn(x) is one on the disk V\.
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should be contained strictly within the ray tube, and X(x) should be zero outside

T (see Figure 4.4). As n gets larger, D,, moves closer to the caustic.

The relative size of the scattered signal to the perturbation is given in terms of

the L 2 norms:

11iC112 = J /dxodzolxn(xo,zo)2 = IIx.Il 2

118Un1 2 = /dx t xn(xo, zo)1 + €(xo,o) 2 2 (32)

The time that it takes to get from the initial wavefront to the reflector then to the

surface is O(xo, zo) + zo so that points (xo, zo) are mapped to (x, t) by

(x,t)=(xo; (xo, Zo)+Zo) at z=O.

This is illustrated in Figure 4.5. Making this change of variables in (32) changes

the amplitude only by the Jacobian factor J = (1 + O.). Then

2

118Un112  f dxodzo Xn(XO, zo) a(xo, ZO)
+ qS (xo, 1o)

2

Since 4 satisfies the eikonal equation IVOI5 = 1 and €, > 0, the factor (1+Oz)-

is 0(1). But as the incident rays get closer to the caustic, the amplitude a(xo, Zo)

approaches infinity. This was shown in Chapter 2 by integrating the transport

equation over the ray tube. which collapses. Thus

l 2 ---OO as n --+ o.
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reflected ray incident ray

OZOZO

caustic
(ZO, zo)

Figure 4.5. Points (xo, zo) are mapped along reflected rays to (z', t) at- z =0.
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If them is no caustic in the incident wavefield then I is always bounded since

116Cll1

the amplitude remains bounded.

An incident point source field -'H(-O) could have been used instead of the

Heaviside field, H(-Ob). Under these circumstances, the conclusion would be that

IllkSuI remains bounded (33)

as long as the support of 5c stays away from the incident caustic, but approaches

infinity if the support of 6c approaches the caustic.

This is verified by a result of Rakesh [16], which states that if there are no

caustics present, then

I111l.=oii(ft)/2 < constantllcll , ". (34)

The s-norm, II Ik, is the Sobolev norm defined by

lhf 11 (J dk(1 + k2)-j(k) 12)1

In two dimensions, (34) can be written as

I SuI I constantlNchl,

which says that the s - d ,erivative of 8u is the same size as the Sth derivative

of Sc. Since the factor of k- I in (33) acts like a (- )Lh derivative, the results (33)

and (34) are consistent.



CHAPTER 5

The Inverse Operator

5.1 The Construction of the Inverse

In Chapter 3 we found the following Fourier integral operator representation for the

scattered signal due to a general perturbation 6c(z):

, w.,=o ~ {PcI(xi,,t) (35)

= JJ dkdzA(k, x1, t)ei[,r(kx")-k'Zjc(z)

This representation is valid away from any caustics in the perturbational field. It

is, in fact, valid even if there are caustics in tl-e incident field. The goal of this

chapter is to find an inverse operator for this representation. That is, we will find

an inverse of the forward map

DS[co]8c = ,8W V 2=0

Let P be the operator defined by

PSc(r,, t) = f J dk.dzA(k,, x1, t)c '[' ,xi=t)-k;Zicc(z) .

The operators P and P are the same; the subscript 1 is used only for clarification.
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We intend to find an operator P2 that is close to an inverse operator. To define

what close means, we must introduce a parameter r that describes the roughness

of 6c. Recall that we assumed in the geometrical optics calculations that 8c acted

as a reflector. This is a statement that 8c is rough. One way of viewing this is if

the velocity perturbation can be written in the form

Sc(z) = a(z)etr,(,)

As r --+ oo, 6c oscillates more and more rapidly and thus becomes very rough.

Assuming that Sc(z) can be represented in this way and a(z) has compact support

in z, we will look for an operator P2 such that

P2P 1 S(z) - Ic(z) as r -- *o.

Define P2 as

P2f(Y) = J J dk2dxA2 (k 2, x)e-i[g(k2,x)-k2Y (x) •  (36)

P2 is similar to the adjoint operator to P1. Then, letting i represent (xIt),

P2 P1 Sc(y) f JJJJf dkjdk2ddzi[(k1 ,R)-k, .z-, (k2 ,fc)+k 2 .yi

x Am(k, R) A2 (k2, R) 6c(Z).

Since 6(y) can be written as the inverse of its Fourier transform,

6(y) = J dkdzeik'(Y-Z)c(z), (37)
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the idea is to make P2Pi8c(y) look like (37). In order to accomplish this, two of

the integrals in P2Pc(y) must be eliminated. But a large parameter in the phase

function is necessary to perform a stationary phase calculation. Therefore, we make

the change of variables

ki -+ rki, i =1,2 .

The amplitude in A, was shown in Chapter 3 to be homogeneous of order I. Then

assuming that A2 is homogeneous of order t, we have

P2Pi6C(Y) = 1 1dkldk2didzr 2
4 +e(kk2*Y)

x .A(k1 , R)A2(k2, R)Sc(z),

where 4(kj, k 2, x, y, z) -(k, R) - k, ' z - O(k 2, R) + k2 " y.

We ihtend to do a stationary phase calculation on the (k 2, R) variables. There-

fore, the error term will be expressed as an integral over the (ki, z) variables -of a

function that is O(r-). In order to ensure that the entire integral is O(r - ) and

can be considered asymptotically of lower order than the leading term, we do the

following calculation. The integral P2Ptc(y) can be rewritten as

P2Pr c(y) = J dkldzr 4+ +2a(k,z)eirk za(z)ei (z,

where

a(k,z) = JJf dk~d*11 (k,,ic)A2 (k2 , k)er ' [ (k ''x) - (k 'f)+k 'y ] •
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Thenletting b(ki, z) = a(z)a(ki, z) and q = 4 + 1 + t,

P2PiSc(y) = J] dkldzrqb(ki, z)ei'kZevy(z)

= JJ~~dk~dzrqb( k1,,Z)eirkjzi'&Ti(z)

+ I k,>_dkldzrqb(kl,z)eirklZei(z)

The amplitude b(kl,z) has compact support in z since a(z) does. Therefore, the

integral over the region k, :5 1 is bounded by something that is O(rq),

I Jk<1 dkldzrQb(k1 ,z)ekl'ze T(z) < constant (7 q)

For the infinite integral, we write

eirkl.z k . V-eiki~z

i-rk~ 2~~~

then do an integration by parts in z:

I f> dkdz q b(kj'z)e'*Y(Z)_ V -eirklz
1>1 irk?

- ff~ 1r7 u. ~ irv(z)eirkl~z
= f dkidz7 .[V.(z)b(ki,z) + 1 v..b(k,,z)]e e '

f fl !1k2zr J

Thus, one integration by parts pulls in a factor of k1
- 1 without changing the order in

r. Two more applications of integration by parts provides a factor of kj 3 ensuring

the absolute convergence of the integral, again without changing the order in r.

It is possible now to estimate the integral P2Pi~c(y) as

P2 P1 6c(y 7 f JJ dk)dz (b(k,,z)eirkl.eir-Y(z)j

- ((rq) .
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Now stationary phase can be performed on the (k2, i) variables. The stationary

points are given by

Vk2( = y- Vk2¢(k 2,R) = 0 (38)

ViF = VjO(k,R) - VjO(k 2,R) = 0. (39)

The second equation (39) is satisfied by k2 = kj. The first equation (38) specifies

some stationary points (kj, i;). As long as k2 = k, is the only solution of (39) then

the following calculation of the approximate inverse can be done. It doesn't matter

how many points R! there are. For simplicity of notation we will assume that there

is only one; call it R'. In any case, the implicit function theorem ensures that the

stationary points will be locally unique as long as

det I Vk, VjOf(kt, c)[ 0 O.

This mixed Hessian [ Otk, 6 k2 1
11=I

Ox1k Ox k2

is singular precisely at a caustic and corresponds to the singularity of Beylkin's ma-

trix (8). If H is non-singular, the order in k of the amplitude A,(kj, x', t) determines

the size of the operator P [15].

Notice that condition !39) concerns the ray directiou vector

(0 00 _06) (dxl dx2 dt\
OXI (X2 a do, dodo,
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Thus,-the assumption that the solution of (39) is globally unique is a statement that

the direction of the rays at the surface change when the direction of the perturbation

changes. For an illustration when the background velocity is constant, see Figure

At the point (k 2 , R) = (ki, R), the second derivatives of 4? are given by

'Vk2Vk2 'I(k 1 ,*) --Vk, Vk, 0(kl, *)

V'jVA~kjfC = ViVfO(k,k*) - V:EV~jO(k, R*) = 0

Vk2 VAIt(kj,fv) =-Vk 2 Vjq(k,Ri).

Therefore det[V(k1 ,~),flVk fl(k 1 , *)] ) det[Vk, VjqS(k1 , R*)], and

P2Pi8C(Y) = Jdkldzr7 2'(27r)'A1 (kl, i)A 2(k1,,k*)Sc(z)

x eT gA ei7(y-z)-ki

detVk 2 q.kl ,rL +t)1

+ Jdkdze" zkI~ 2 e)

where the X, are eigenvalues of V(k2,flV(k2,fl4(kl,:R*).

Lettingl A2 (k2 , R) (2X2fAI(k2, R)]J1 eiSgA ekVdk,) and

2 -, we have

P2Pv 6C(Y) = J dkldzT26c(z)e r(y -z)k j k(
f ff dk~dz bc(z)er(Y-z)k ()
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Changing variables again

7ki -+ k

gives

P2P16C(Y) =J dk Idz 6c(z)e (y-z)kt + J dkldz 6c(z)i(Y-z).klQ(r-).

As we saw above, the error term is 0(r-1 ); therefore

P2 Pi6c(y) - Ic(y).

5.2 An Extension for 3-D Varying Background Velocity

Note that the representation of the trace of the perturbational field SU found in

Section 5.1 (35) is general enough to include the case of a general initial wavefront

moving into a medium with a smoothly varying background velocity co Co(x). In

this-case the reference field has the form

uo = a(x, t)6(t- O(x)) .

Then the reflected phase 0,(k, x, t) satisfies the eikonal equation

1 2 - IVO'r2 = 0,

6,(X, O(X)) = 1 ,

and the amplitude A solves the transport equation

2orAt - 2VA V 6. + ( O, ,)A = 0, t > O(x)
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A= k'76 c(k)(x,t) on t = O(x)
co3 (x)k.Vk

To extend the calculation to three dimensions, note that the vector x can be

n-dimensional

x = (IhXz2,...,zX), n > 1

Let x' = (X 1 X2,. i, XI). Then the forward map can be expressed as

SVn= ,,=o P Sc(x', t) = f dkidzA, (ki, x', t)ei(or(kl x',t-k,'z c(z)

The amplitude A, is homogeneous of order m, where m depends on the dimension

n and the initial singularity. Furthermore, the inverse operator P2 can be defined

as

P2 f(y) = J dk2dRA 2(k2, *)e-Y(k2,*)-k2 Y) f(),

where A2 is defined as in Section 5.1.



CHAPTER 6

The Relationship to Beylkin's Inverse

Although the inverse operator (36) derived in Chapter 5 appears to be different

from Beylkin's inverse (8) described in Chapter 2, they should be related if the

initial wavefronts are the same. The differential equation that Beylkin treats is the

reduced wave equation, which is related to the time dependent wave equation by

the Fourier transform. In this chapter we show that the two forward operators are

equivalent up to amplitude. It then follows that the inverses are also equivalent.

The integral operator representation for the scattered signal generalized to n

dimensions is

[PISc](x',t) = JJ dk1 dzAI(k 1, x',tle'kli*r(k x" t'ZJ~c(z) . (40)

The scattered field solves the perturbational wave equation

1 u- V 2Su = 26c

6u = 5ut=O for t<O,

where the incident wave field uo satisfies

1 2LUO" - V2UO = 0

67
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uo(x,O) =g(()

and g((x)) is singular at O(x)= 0.

The Fourier transform of the integral operatDr representation for the scattered

signal found in Beylkin [13] is

Fvxc(w t) - x~f J W (41)

The scattered signal VSc solves the reduced wave equation

W 2 V3c + V 2Vs" = -W 2f(x)vin

vic=0, x large,

where vin satisfies

W2nov2 + Vv n = 8(X - 77)

vin = 0 , x large.

The scattered field vic is solved by the use of the Green's function

ut"' + Vo° t = 8(x

If the initial wavefront uo(x, 0) were due to a point source, then the integral

operator representations of the scattered field, (40) and (A1), should be very clobely

related. In order to exhibit this relationship, we first analyze the representation



69

(40) shown in Chapter 5. We can split the integral over k1 into an integral over the

unit vector k1 and an integral over the length k1. Then

P1Sc(x', t) = fJ ddzAi,(k,, x', t)6c(z) f dk, k'+n- 1 eikI[(I,X',t)- i-ZJ

if A I(kj, x', t) is homogeneous of order m.

Since the Fourier transform of the jth derivative of 6(x) is -(-ik)j,

P, 8c(x', t) =

-I I dk,,dz,(, XIx',t) C(Z)(-i)1--n-"c+n-')(¢.(f,,X,,,t) _ k,, Z),

where b(m+n-1) is the (m -I n - f)th derivative of 6(x).

This representation of the scattered signal is an integral of the form

I = J dx a(x)S(m+n-1)(O(x))

Changing variables to

Y = (Yl,. . .,yn) =(X 1,.. XnhOx)

gives the Jacobian factor

SI. s- lu-), X(y))

The solution of

Yn - P(y ..., yi YnI X) = 0
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gives . = xn(y, ;y,... , yn-,) since o- is never zero. Therefore

I = Jdy a(yi,. .. ,Yn-IXn(Y)) (,+n-)(y)
S -(y, .. Y._1,Xn(Y))

which is reduced to

I .= dy (8 m+n-1 a(y1 .... i Yn-Ii Xn(Y))]

= odx w(x).

Thus the scattered signal can be written as

P, c(x', t) = . . dk, dz w(k, x', t, z).

The reflected phase 0r(ki, x, t) is constant along rays, and if there are no caustics

present, then the rays do not cross. Thus, given (k1 ,x', t), there is a unique point

z for which

(kl,,x', t) = k, " z

holds. The z that satisfies this is specified by the initial condition for the reflected

phase

0-(l ,,z, O(z)) = k, .z

and is the reflection point of the ray which passes through (x', t) (see Figure 6.1).

Since this is an equation in k, and z only, it specifies -k, as a finction of z. Thus

(42) is an integral over the normal vectors ki, which parameterize the constant
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(z',t)

= constant

ik

Figure 6.1. The point z is the reflection point of the ray which passes
through (x', t).
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traveLtime ellipse t1 + t2 = constant (see Figure 6.2). If the reference velocity is

constant, then the curve tj + t2 = constant is an ellipse, otherwise it is ellipse-like.

Beylkin's representation for the scattered field can similarly be written as an

integral over a constant phase surface,

v3C(,t) = dxw(x, ,q)

The phase 0 satisfies the eikonal equation

IV012  2 ~
= n

which is solved by the Hamilton-Jacobi equations

5x=p P no

1 = -2noVno.

Then

= frays no ,

where the rays are given by k = p. Thus O(x, iq) is the geodesic distance along

the incident ray frorr. the source point q on the surface to the interior point x,

and ¢(x, ) is the geodesic distance along the reflected ray from the point x to the

receiver position (see Figure 6.3). Therefore, v"¢ is an integral over the same

constant travel time ellipse as Su. That is, up to amplitudes, the solutions to the

forward problems Su and v"5 are equivalent. It is expected that the amplitudes will

also prove to be equivalent.
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Z. (z',t)

tl)

t2

tl + t2 = CODlt&nt

Figure 6.2. The vectors k1 parameterize the constant tr,-,l time ellipse
t1 + t2 = constant.
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7

0(T 17 + t

Figure 6.3. The phases q(x, rq) and O(x, 4) are the geodesic distances along
the incident and reflected rays, respectively.



7.5

Since the inverse operators for both 8u and vc are closely related to the adjoint

operators, the equivalence relation found for the forward maps extends to the in-

verses. The inverse operators for both 8u and vSc are also integrals over constant

phase surfaces. in this case, they are constant depth hyperbolas with integration

over arrival times (see Figure 6.4).
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incident ray

z

Figure 6.4. The inverse operators are integrals over const;.nt depth surfaces
paramneterized by arrival times.
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